CHEMICAL HERITAGE FOUNDATION

ROBERT E. LORENZINI

Transcript of an Interview
Conducted by
Hyungsub Choi
at
Menlo Park, California
on
17 September 2007
(With Subsequent Corrections and Additions)
CHEMICAL HERITAGE FOUNDATION
Oral History Program
FINAL RELEASE FORM

This document contains my understanding and agreement with Chemical Heritage Foundation with respect to my participation in the audio-recorded interview conducted by

Hyungsub Choi

on

17 September 2007

I have read the transcript supplied by Chemical Heritage Foundation.

1. The audio recording, corrected transcript, photographs, and memorabilia (collectively called the "Work") will be maintained by Chemical Heritage Foundation and made available in accordance with general policies for research and other scholarly purposes.

2. I hereby grant, assign, and transfer to Chemical Heritage Foundation all right, title, and interest in the Work, including the literary rights and the copyright, except that I shall retain the right to copy, use, and publish the Work in part or in full until my death.

3. The manuscript may be read and the audio recording(s) heard by scholars approved by Chemical Heritage Foundation subject to the restrictions listed below. The scholar pledges not to quote from, cite, or reproduce by any means this material except with the written permission of Chemical Heritage Foundation.

4. I wish to place the conditions that I have checked below upon the use of this interview. I understand that Chemical Heritage Foundation will enforce my wishes until the time of my death, when any restrictions will be removed.

Please check one:

a. [] No restrictions for access.
 NOTE: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to obtain permission from Chemical Heritage Foundation, Philadelphia, Pennsylvania.

b. [] Semi-restricted access. (May view the Work. My permission required to quote, cite, or reproduce.)

c. [] Restricted access. (My permission required to view the Work, quote, cite, or reproduce.)

This constitutes my entire and complete understanding.

(Signature) Robert E. Lorenzini

(Date) 2/26/08

Revised 10/11/05
ROBERT E. LORENZINI

1936 Born in Boston, Massachusetts on 11 December

Education

1954 – 1958 B.S., Materials Science, Stanford University
1958 – 1960 M.S., Materials Science, Stanford University

Professional Experience

Rheem Semiconductors
1960 – 1962 Member of Technical Staff, Research and Development

Allegheny Electronic Chemical Company
1962 – 1963 Chief Engineer

Knapic Electrophysics
1963 – 1964 Chief Engineer

Elmat Corporation
1964 – 1968 President

Siltec Corporation
1969 – 1986 Chairman and CEO

SunPower Corporation
1988 – 2004 CEO, Chairman

Honors

1979 SEMI Award
ABSTRACT

Robert Lorenzini begins the interview by briefly describing his childhood and studying metallurgy at Stanford University for both undergraduate and graduate degrees. After graduation Lorenzini was recruited by Rheem Semiconductors, where he adapted his Master’s thesis work on zone melting in metals to work with silicon. Lorenzini’s efforts lead to Rheem’s own crystal growing furnace and its ability to produce its own silicon wafers. Following brief stints at the Allegheny Electronics Chemical Company and Knapic Electrophysics, Lorenzini decided to capitalize on his reputation as a furnace designer and started Elmat Corporation. Building his first commercial furnace with a focus on speed and maximum operation uptime, Elmat quickly gained customers such as RCA and Texas Instruments. Elmat was eventually purchased by General Instruments in 1968 and Lorenzini founded the Siltec Corporation in 1969. With innovations such as the zero dislocation silicon technique Siltec quickly gained a stable customer base. Lorenzini then described the delicate balance of working with supplying big semiconductor manufacturers with both equipment and silicon supplies. In the late 1980s, as the industry was going through a downturn, Siltec was acquired by Mitsubishi. Free to pursue other projects, Lorenzini got interested in photovoltaics and founded SunPower Corporation with Stanford professor Richard Swanson. Lorenzini concluded the interview by offering a positive outlook on the PV industry.

INTERVIEWER

Hyungsub Choi is the manager for Electronics, Innovation, and Emerging Technology programs at CHF. Choi earned a Ph.D. from the Johns Hopkins University in the history of science and technology. He earned an M.S. in history of technology at Georgia Institute of Technology and a B.S. in engineering from Seoul National University. Choi took over the center’s electronic materials program in November 2006. He has published extensively on such subjects as the history of electronic manufacturing in post–World War II Japan, RCA’s transistor production, and solid-state innovations.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childhood and Early Education</td>
<td>1</td>
</tr>
<tr>
<td>Early aptitude and interest in engineering and science. Moving from</td>
<td></td>
</tr>
<tr>
<td>Boston to San Francisco to Evanston. Enrolling in Stanford University</td>
<td></td>
</tr>
<tr>
<td>to study metallurgy.</td>
<td></td>
</tr>
<tr>
<td>Stanford University and Master’s Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Decision to stay at Stanford for graduate school. Curriculum and new</td>
<td></td>
</tr>
<tr>
<td>research direction within the department. Thesis work on zone melting</td>
<td></td>
</tr>
<tr>
<td>in metals.</td>
<td></td>
</tr>
<tr>
<td>Early career at Rheem Semiconductors and Allegheny Electronic Chemical</td>
<td>6</td>
</tr>
<tr>
<td>Company Recruitment by Leopoldo Valdes. Translating zone melting work</td>
<td></td>
</tr>
<tr>
<td>from metals to silicon. Designing and building the crystal puller at</td>
<td></td>
</tr>
<tr>
<td>Rheem. Pros and cons of flat zone method versus the Czochralski</td>
<td></td>
</tr>
<tr>
<td>technique for crystal growing. Brief stint at Allegheny Electronic</td>
<td></td>
</tr>
<tr>
<td>Chemical Company on the East Coast. Returning to Knapic Eletrophysics</td>
<td></td>
</tr>
<tr>
<td>in California. Knapic’s liquidation and purchasing part of its supplies</td>
<td></td>
</tr>
<tr>
<td>for own startup.</td>
<td></td>
</tr>
<tr>
<td>Entrepreneurship with Elmat Corporation</td>
<td>14</td>
</tr>
<tr>
<td>Starting Elmat in 1964. Moving from RF to resistance heated growing</td>
<td></td>
</tr>
<tr>
<td>furnaces. Designing a speed-oriented furnace. First Elmat customers</td>
<td></td>
</tr>
<tr>
<td>and working relationships with them. SEMI standardization efforts.</td>
<td></td>
</tr>
<tr>
<td>Basic Elmat operations. Dendritic germanium/ribbon growing technique.</td>
<td></td>
</tr>
<tr>
<td>Purchase by General Instruments in 1968.</td>
<td></td>
</tr>
<tr>
<td>The Siltec Years</td>
<td>21</td>
</tr>
<tr>
<td>Developing the zero dislocation silicon technique. Competition and</td>
<td></td>
</tr>
<tr>
<td>cooperation with bigger companies. Siltec company expansion model.</td>
<td></td>
</tr>
<tr>
<td>Key technological advances during the Siltec years. Foreign competition</td>
<td></td>
</tr>
<tr>
<td>and industry downturn. Siltec acquisition by Mitsubishi.</td>
<td></td>
</tr>
<tr>
<td>Venture Capital and Interests in Photovoltaics</td>
<td>28</td>
</tr>
<tr>
<td>Working with the Electric Power Research Institute (EPRI) and</td>
<td></td>
</tr>
<tr>
<td>introduction to Richard Swanson. Raising capital to start SunPower</td>
<td></td>
</tr>
<tr>
<td>Corporation. Application of semiconductor manufacturing techniques and</td>
<td></td>
</tr>
<tr>
<td>equipment to photovoltaics. Outlook on the PV industry.</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>31</td>
</tr>
</tbody>
</table>
INDEX

A
Addison, Craig, 8, 17, 23
Allegheny Electronic Chemical Company, 11, 13
Applied Materials, 29, 30

B
Baldwin, Ed, 7
Bell Telephone Laboratories, 5
Bethlehem Steel, 6
Boston, Massachusetts, 1, 2, 5, 11
Bradford, Pennsylvania, 11
Buffalo, New York, 11

C
California, 2, 13, 14
California, University of, Berkeley, 1
Cornell University, 2
Czochralski technique, the, 8, 9, 10

D
Darby, Tom, 11
DuPont, 10

E
Electric Power Research Institute [EPRI], 28, 29
Elmat Corporation, 13, 14, 15, 18, 19, 20, 21, 26
Evanston, Illinois, 2
Evergreen Solar, 20

F
Fairchild Semiconductor, 7, 12, 16

G
Gay, Charlie, 29
General Electric [GE], 12
General Instruments, 21

H
Harrison, New Jersey, 12
Huggins, Robert A., 4

I
IBM, 16, 17, 18, 19
Intel Corporation, 12

K
Knapic Electrophysics, 13, 14, 16
Knapic, Dean, 13, 14

M
Massachusetts Institute of Technology [MIT], 4, 5
MEMC Electronic Materials, Inc., 28
Merck & Co., Inc., 10
Mitsubishi, 25, 29
Monsanto, 24, 28
Motorola, 12
Mountain View, California, 7

N
Northwestern University, 2

O
Oregon, 15

P
Pfann, William, 5
Pittsburgh, Pennsylvania, 11
Princeton, New Jersey, 12
Purdue University, 2

R
RCA, 12, 15, 16
Rheem Semiconductor, 6, 7, 8, 10, 11, 26
S
San Francisco, California, 2
Sarnoff, David, 12
SEMATECH, 26
Semiconductor Equipment and Materials
 International [SEMI], 8, 18
Shepard, Orson Cutler, 2
Shockley Semiconductor, 14
Shunitsu Handotai, 28
Siltec Corporation, 18, 21, 22, 23, 24, 25, 26, 27, 28
Somerville, New Jersey, 12
Standard Oil Company, 1
Stanford University, 2, 3, 4, 29
Stevenson, David A., 5
Swanson, Richard, 29, 30
T
Texas Instruments [TI], 11, 12, 16, 23, 25
U
United States Air Force, 20
V
Valdes, Leopoldo B., 6, 7
W
Wacker Chemical, 28
Western Electric, 25
Westinghouse, 7, 12, 19, 20